9.2 Parabolas

The phrase conic sections stems from the fact that these are curves in which a plane intersects a cone. Hence these figures are referred to as conic sections.

A plane C perpendicular to the axis of the cone intersects the cone in a circle. The plane E, tilted so that it is not perpendicular to the axis, intersects the cone in an ellipse. The plane parallel to a line on the surface of the cone intersects the cone in a parabola. When the plane intersects both cones, a hyperbola is formed.

Besides the geometric description of a conic section just given, a conic can be defined as a set of points.
A parabola is the set of points in the plane that are equidistant from a fixed line l (the directrix) and a fixed point F (the focus) not on the directrix.

The line that passes through F and is perpendicular to l is called the axis of symmetry of the parabola. The midpoint V of the segment between F and l on the axis of symmetry is the vertex of the parabola.

I Standard Forms of the Equation of a Parabola with Vertex at the Origin

Suppose that the perpendicular distance from F to l is $2|p|, V$ is at origin, and the axis of symmetry is the y-axis.

Example 1 Find F and l of the parabola given by the equation $y=-\frac{1}{2} x^{2}$.

2 Find the equation of the parabola in standard form with $V(0,0)$ and $F(-2,0)$.

3 Write the standard form of the equation of parabola with directrix $y=4$ and vertex at $(0,0)$.

II Standard Forms of the Equation of a Parabola with Vertex at (h,k) horizontal axis of symmetry \qquad vertical axis of symmetry

4 Write an equation of the parabola whose vertex is at $(-2,1)$ and whose focus is at $(-3,1)$.

5 Find the equation of l and the coordinates of V and F of the parabola given by the equation $3 x+2 y^{2}+$ $8 y-4=0$.

Homework

1 Tell whether the parabola opens up, down, left, or right. (a) $x=7 y^{2}$
(b) $x^{2}=\frac{4}{3} y$

2 Graph the equation. Identify the focus and directrix of the parabola. (a) $y^{2}=-14 x \quad$ (b) $x^{2}=18 y$
3 Write the standard form of the equation of the parabola
(a) with the focus $(-2,0)$ and vertex at $(0,0)$;
(b) with the directix $y=-3$ and vertex at $(0,0)$

4 Write an equation for the parabola with vertex at $(1,-2)$ and focus at $(1,1)$.
5* Write the equation $y^{2}-12 y+4 x+4=0$ in standard form. Then graph the equation.

